Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ, ПРОВОДИМОГО РГГМУ САМОСТОЯТЕЛЬНО

для поступающих на основные образовательные программы магистратуры в 2024 году

направление подготовки 05.04.05 Прикладная гидрометеорология

Санкт-Петербург 2023

1. Общие положения

Программа вступительного испытания предназначена для абитуриентов, поступающих на обучение на программы магистратуры федерального государственного бюджетного образовательного учреждения высшего образования «Российский государственный гидрометеорологический университет» (РГГМУ) (Приложение).

Целью вступительного испытания в магистратуру является выявление степени готовности абитуриентов к освоению образовательной программы магистратуры.

Программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, профессиональных стандартов.

2. Форма вступительного испытания

Вступительное испытание проводится очно или с применением дистанционных образовательных технологий в письменной форме в соответствии с расписанием, утвержденным председателем приемной комиссии и размещенном на странице официального сайта РГГМУ (http://dovus.rshu.ru/content/priemkom/abit).

Проведение вступительного испытания с применением дистанционных образовательных технологий регламентируется Положением об организации вступительных испытаний с использованием дистанционных технологий, размещенном на официальном сайте РГГМУ (http://dovus.rshu.ru/content/priemkom/norm).

3. Продолжительность вступительного испытания

На выполнение заданий вступительного испытания отводится 90 минут (1,5 астрономических часа).

4. Содержание вступительного испытания

Блок 1. «Общие вопросы наук о Земле».

Земля в структуре Вселенной. Геометрические модели Земли. Геофизические поля Геофизические данные, их обработка и интерпретация. Взаимодействие внешних геосфер. Климатическая система и её составляющие. Астрономические факторы формирования климата. Тепловой баланс подстилающей поверхности. Пространственное распределение климатических характеристик и климатические классификации. Факторы общей циркуляции атмосферы и океана.

Блок 2. «Физика атмосферы, океана и вод суши».

Тема «Физика атмосферы». Состав и строение атмосферы. Радиационный режим атмосферы. Статика атмосферы. Термодинамика атмосферы. Радиационный баланс земной поверхности и системы Земля-атмосфера. Облака и осадки.

Тема «Физика океана». Основы термостатики океана. Законы изменения термодинамических характеристик океана. Тепло- и влагообмен в системе океанатмосфера. Океаническая турбулентность, физические причины, приводящие к ее возникновению, роль вертикальной стратификации в переносе турбулентных возмущений. Физические свойства морского льда.

Тема «Физика вод суши». Молекулярная физика воды в трех ее агрегатных состояниях. Физические свойства воды, водяного пара, льда, снега. Количественная оценка теплообмена и теплоотдачи. Испарение с поверхности воды, снега, льда и почвы. Формирование и строение речной сети, озер, водохранилищ и из водосборов.

Блок 3. «Статистические и численные методы, используемые в гидрометеорологии».

Случайные величины и функции распределения; интегральная функция распределения; функция обеспеченностей; функция плотности вероятностей. Числовые характеристики случайных величин. Моменты случайной величины. Свойства числовых

характеристик случайных величин. Аналитические функции распределения и их использование в гидрометеорологии. Статистический анализ зависимостей.

Уровни представления и классификация моделей данных для ГИС. Системы управления базами данных и ГИС. Современные концепции организации хранения данных. Модели пространственных и атрибутивных данных в ГИС. Растровые и векторные модели данных.

5. Структура вступительного испытания

Вступительное испытание включает три вопроса по одному из блоков «Общие вопросы наук о Земле», «Физика атмосферы, океана и вод суши», «Статистические и численные методы, используемые в гидрометеорологии».

Работа содержит задания открытого типа, к которым требуется дать развёрнутый ответ.

6. Примеры заданий вступительного испытания

- 6.1. Блок 1. «Общие вопросы наук о Земле».
- 1. Фигура Земли.
- 2. Геометрические модели Земли, её планетарные характеристики.
- 3. Условия существования, происхождение, состав, элементы и структура атмосферы.
- 4. Моделирование, как метод познания, современные взгляды на природные системы и законы, лежащие в основе наук о Земле.
 - 5. Электрические поля в атмосфере, поля грозовых разрядов.
 - 6. Магнитное поле Земли, магнитные бури.
 - 7. Взаимодействие океана и атмосферы.
 - 8. Взаимодействие атмосферы и суши.
 - 9. Биосфера и её связь с атмосферой.
 - 10. Техносфера и её связь с атмосферой.
 - 11. Определение климата, виды климатологии.
 - 12. Климатообразующие факторы и их составляющие.
 - 13. Астрономические факторы, формирующие климат.
 - 14. Влияние рельефа на климат.
 - 15. Классификация климатов.
- 16. Тепловой баланс подстилающей поверхности и его распределение по поверхности Земли и внутри года.
 - 17. Общая циркуляция атмосферы.
 - 18. Общая циркуляция океана.
 - 19. Океанические течения, их классификация.
- 20. Особенности вертикальной структуры циркуляции океана: апвеллинг, подводные вихри и ринги.
 - 21. Явление Эль-Ниньо и его механизм.
 - 22. Вертикальная климатическая поясность.
 - 23. Понятие мезо- и микроклимата.
 - 24. Водный баланс или круговорот воды на Земле.

6.2. Блок 2. «Физика атмосферы, океана и вод суши»

Тема «Физика атмосферы»

- 1. Газовый состав атмосферы, его изменение с высотой и влияние на метеорологические характеристики атмосферы.
 - 2. Принципы деления атмосферы на слои и их характеристики.
 - 3. Применение основных газовых законов к атмосфере.

- 4. Распространение солнечной радиации в атмосфере: спектральный состав на внешней границе, поглощение и рассеяние.
 - 5. Конвекция в атмосфере.
- 6. Распределение давления на уровне моря по поверхности Земли, барические образования, фронты.
 - 7. Облака, их классификация и условия образования.
 - 8. Радиационный баланс подстилающей поверхности.
 - 9. Стратификация атмосферы.

Тема «Физика океана»

- 10. Состав морской воды, постоянство солевого состава. Плотность морской воды, уравнение состояния.
- 11. Процессы перемешивания в океане. Молекулярное, турбулентное и конвективное перемешивание.
- 12. Силы, действующие в океане. Уравнения движения. Уравнение теплопроводности и переноса соли.
 - 13. Водные массы Мирового океана. Фронтальные зоны в Мировом океане.
- 14. Морской лед. Физические свойства морского льда. Температура замерзания морской воды. Роль морского льда в формировании климата.
- 15. Турбулентность в морской воде. Механизмы формирования турбулентности в океане. Вертикальные и горизонтальные коэффициенты турбулентной вязкости, теплопроводности и диффузии.
- 16. Деление Мирового океана. Классификация морей. Глобальная циркуляция Мирового океана.
- 17. Строение дна Мирового океана. Батиграфическая кривая. Шельф, ложе океана, срединные океанические хребты.

Тема «Физика вод суши»

- 18. Фазовые состояния воды. Условия фазовых переходов. Гипотезы строения молекул воды. Гипотезы структуры воды в трех ее фазовых состояниях
 - 19. Физические свойства воды. Аномальные свойства воды
 - 20. Основные физические свойства льда и снежного покрова.
- 21. Теплопередача и теплоотдача: теплопроводностью, конвекцией, лучистым теплообменом, при изменении агрегатного состояния вещества.
- 22. Физика процесса испарения с водной поверхности. Методы расчета испарения с поверхности воды.
- 23. Виды атмосферных осадков и современные методы их расчета при оценке составляющих водного баланса.
- 24. Основные элементы речных систем. Густота речной сети. Морфологические и морфометрические характеристики рек и их водосборов.
- 6.3. Блок 3. «Статистические и численные методы, используемые в гидрометеорологии»
 - 1. Случайная величина, классификация случайных величин.
- 2. Понятие генеральной и выборочной совокупностей (несмещенность, состоятельность, эффективность).
- 3. Моменты распределения случайной величины (начальные и центральные статистические моменты).
- 4. Числовые характеристики случайных величин (мода, медиана, математическое ожидание).
- 5. Числовые характеристики случайных величин (дисперсия, среднеквадратическое отклонение, коэффициент вариации).
 - 6. Числовые характеристики случайных величин (асимметрия и эксцесс).
- 7. Аналитические функции распределения (нормальное распределение, асимметричное распределение).

- 8. Аппроксимация рядов наблюдений аналитической функцией.
- 9. Проверка гипотез о равенстве выборочных средних и дисперсий.
- 10. Уровень значимости в статистической оценке.
- 11. Анализ погрешностей измерений и расчетов (случайные и систематические погрешности, грубые погрешности).
 - 12. Метод наименьших квадратов.
- 13. Корреляционный анализ (виды связи между двумя переменными, прямая и обратная связь, ложная взаимосвязь).
- 14. Коэффициент корреляции (его свойства, оценка достоверности и значимости).
 - 15. Выделение и анализ трендовой компоненты во временных рядах.
- 16. Автокорреляционный анализ (коэффициент автокорреляции, автокорреляционные функции).
 - 17. Регрессионный анализ. Линейная регрессия.
- 18. Корректность, устойчивость, сходимость разностных схем в численных методах (с примерами).
 - 19. Модели данных как информационная основа БД.
 - 20. Векторные и растровые модели.
 - 21. Принципы построения моделей данных и ГИС.
 - 22. Атрибутивное описание объектов.
 - 23. Классификация ГИС. Место ГИС на информационном рынке.
 - 24. Оцифровка графических объектов.

7. Критерии оценивания отдельных заданий и работы в целом

Ответы на вопросы вступительного испытания оцениваются по 100-балльной шкале. Оценка за ответ на вопрос в целом определяется на основании среднего арифметического баллов, набранных абитуриентом по каждому из трех вопросов. В случае если оценка между двумя соседними баллами она трактуется в пользу поступающего. Итоговая оценка за вступительное испытание определяется на основании коллегиального решения членов экзаменационной комиссии.

Баллы	Критерии выставления оценки			
Блок 1 «Общие вопросы наук о Земле»				
(максимальный балл -30 баллов $)$				
10	Раскрыты основные понятия. Изложены основные факторы, определяю			
	взаимодействие внутренних и внешних геосфер.			
10	Проанализирован круг задач, решаемых в данной области науки и методы их			
	решения.			
10	Приведены примеры использования геофизической информации при изучении и			
	анализе гидрометеорологических процессов.			
0	Отсутствие ответа или не соответствие ответа заданному вопросу.			
Блок 2 «Физика атмосферы, океана и вод суши»				
(максимальный балл – 30 баллов)				
15	Раскрыты основные понятия. Изложена физическая сущность явлений и			
	процессов, происходящих в атмосфере, океане и водах суши.			
15	Приведены математические формулировки, описывающие природные процессы			
	или явления.			
10	Приведены примеры расчетов характеристик физических процессов или явлений			
0	Отсутствие ответа или несоответствие ответа заданному вопросу			
Блок 3 «Статистические и численные методы, используемые в гидрометеорологии				
	(максимальный балл – 30 баллов)			

Баллы	Критерии выставления оценки	
10	Раскрыты основные понятия. Изложены принципы методов расчетов.	
10	Приведены математические формулировки методов расчетов.	
10	Проанализирован круг задач, решаемых в данной области науки, и методы их	
	решения. Приведены примеры расчетов характеристик.	
0	Отсутствие ответа или не соответствие ответа заданному вопросу.	

Максимальное количество баллов за вступительное испытание – 100

Минимальное количество баллов, подтверждающее успешное прохождение вступительного испытания -40.

8. Список литературы, рекомендуемый для подготовки к вступительному испытанию Основная

Блок 1

- 1. Лобанов В.А. Лекции по климатологии. Часть 1. Общая климатология. Книга 1 в двух книгах: учебник. – СПб: РГГМУ, 2019 - 378 с. Электронный библиотечный pecypc: http://elib.rshu.ru/files_books/pdf/img-417170314.pdf.
- 2. Лобанов В.А. Лекции по климатологии. Часть 1. Общая климатология. Книга 2 в двух книгах: учебник. — СПб: РГГМУ, 2020. — 378 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files books/pdf/img-417170318.pdf.
- 3. Лобанов В.А., Смирнов И.А., Шадурский А.Е. Практикум по климатологии. Часть 1. (учебное пособие). Санкт-Петербург, 2011. 144 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-417170314.pdf.
- 4. Мохнач М.Ф., Прокофьева Т.И. Геология. Учебник для вузов. Книга 1. Геосферы СПб.: изд. РГГМУ, 2010. 263 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-503202005.pdf.
- 5. Мохнач М.Ф., Прокофьева Т.И. Геология. Учебник для вузов. Книга 2. Геодинамика СПб.: изд. РГГМУ, 2010.-280 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-504172806.pdf.
- 6. Павлов А.Н. Геофизика. Общий курс о природе Земли. Учебник. Изд. 2-е, перераб. и доп. СПб.: РГГМУ, 2015. 455 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/rid_0d48a3cabc3e42168041cc8c1b902cd3.pdf.
- 7. Трухин В.И., Показеев К.В., Куницын В.Е. Общая и экологическая геофизика. –М.: ФИЗМАТЛИТ, 2005. 576 с.
 - 8. Физика Земли: учебник / В.С. Захаров, В.Б. Смирнов. М.: Инфа-М, 2016. 328 с.

Блок 2

Тема «Физика атмосферы»

- 1. Ерёмина Н.С. Методические указания по дисциплине «Физика атмосферы» для высших учебных заведений. Направление подготовки 05.03.05. Прикладная гидрометеорология. Профиль подготовки Прикладная океанология. СПб.: РГГМУ, 2016. 12 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/rid_7f3ae245e1bb45f98738ae9a4d2390a8.pdf
- 2. Матвеев Л.Т. Физика атмосферы: Учебник. 3-е издание, переработанное и дополненное. СПб.: Гидрометеоиздат, 2000. 777 с.
- 3. Метеорология и климатология: Учебное пособие / Г.И. Пиловец. М.: НИЦ Инфра-М; Мн.: Нов. знание, 2013. 399 с. Электронный библиотечный ресурс: http://znanium.com/catalog.php?bookinfo=391608.

Тема «Физика океана»

- 4. Доронин Ю.П. Физика океана. Изд. РГГМУ, СПб, 2000. 305 с.
- 5. Доронин Ю.П., Лукьянов С. В. Лабораторные работы по Физике океана. Изд. РГГМИ, СПб. 1993. 86 с.

- 6. Кистович А.В., Показеев К.В. Физика моря: учеб. пособие / Изд Моск. гос. ун-т им. М.В. Ломоносова, Физ. фак. Москва: Макс пресс, 2011. 244 с.
 - 7. Тема «Физика вод суши»
- 8. Винников С.Д., Викторова Н.В. Физика вод суши. СПб.: Изд. РГГМУ, 2009. 430 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-504191603.pdf.
- 9. Догановский А.М., Малинин В.Н. Гидросфера Земли. СПб.: Гидрометеоиздат, 2004. Электронный ресурс: http://elib.rshu.ru/files_books/pdf/img-504182530.pdf.
- 10.
 Догановский А.М. Гидрология суши (общий курс). СПб. Изд. РГГМУ,

 2012.
 Электронный библиотечный ресурс:

 http://elib.rshu.ru/files_books/pdf/rid_4b83fac15bf54a3b84b59ca6912c9af4.pdf.
- 11. Мишон В.М. Практическая гидрофизика. Л.: Гидрометеоиздат, 1983. 176 с. Блок 3
- 12. Белов Н. П., Борисенков Е. П., Панин Б. Д. Численные методы прогноза погоды. Л.: Гидрометеоиздат, 1989. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-090589.pdf.
- 13. Вуколов Э.А. Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTICA и EXCEL: Уч.пос./2 изд. М.: Форум:НИЦ Инфра-М, 2013.- 464 с.: Электронный библиотечный ресурс: http://znanium.com/catalog.php?bookinfo=369689.
- 14. Казакевич Д.И. Основы теории случайных функций в задачах гидрометеорологии. Л.: Гидрометеоиздат, 1989. 230 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-428163237.pdf.
- 15. Малинин В.Н. Статистические методы анализа гидрометеорологической информации. Санкт-Петербург, 2008. 407 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-417184359.pdf.
- 16. Репинская Р. П., Анискина О. Г. Конечно-разностные методы в гидродинамическом моделировании атмосферных процессов. СПб.: РГГМИ, 2001. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-213172857.pdf.
- 17. Сикан А. В. Методы статистической обработки гидрометеорологической информации. Учебник СПб.: РГГМУ, 2007. 279 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-515132435.pdf.
- 18. Гайдукова Е.В., Викторова Н.В. Численные методы в гидрологии. Учебное пособие. СПб.: изд. РГГМУ, 2019. 112 с. Электронный библиотечный ресурс: elib.rshu.ru/files_books/pdf/rid_e02a9474320f463bbc7b2c24d4c6425c.pdf.

Дополнительная

Блок 1

- 1. Алисов Б.П., Полтараус Б.В. Климатология. Из-во МГУ, 1974. 299 с.
- 2. Аплонов С.В., Титов К.В. Геофизика для геологов: Учебник. СПб.: Издательство СПбГУ, 2010.-248 с.
- 3. Кароль И.Л. Введение в динамику климата Земли. Л.: Гидрометеоиздат, $1988-216~\mathrm{c}$.
- 4. Кислов А.В. Климат в прошлом, настоящем и будущем. М.: МАИК «Наука/Интерпериодика», 2001. 352 с.
- 5. Короновский Н.В., Ясаманов Н.А. Геология. Учебник. М.: изд. Академия, 2006. 448 с.
- 6. Матвеев Л.Т. Теория общей циркуляции атмосферы и климата Земли. Л.: Гидрометеоиздат, 1991. 296 с.

- 7. Общая геология: учебное пособие, электронное издание сетевого распространения / Н. В. Короновский. М.: «КДУ», «Добросвет», 2018. Электронный библиотечный ресурс: https://bookonlime.ru/product/obshchaya-geologiya.
 - 8. Тарасов Л.В. Атмосфера нашей планеты. М.: ФИЗМАТЛИТ, 2012. 420 с.
- 9. Хромов С.П., Петросянц М.П. Метеорология и климатология. Из-во МГУ, 2001.-528
 - 10. Школьный Е.П. Климатология. Л.: Гидрометеоиздат, 1989. 568 с.
- 11. Якушова А.Ф., Хаин В.Е., Славин В.И. Общая геология. Учебник. М.: издво МГУ, 1988. 448 с.

Блок 2

Тема «Физика атмосферы»

- 1. Задачник по общей метеорологии. Под ред. В.Г. Морачевского. Л.: Гидрометеоиздат, 1984.-312 с.
- 2. Клемин, В. В. Динамика атмосферы: учебник для студентов, обучающихся по направлению подготовки «Гидрометеорология» и специальностям «Метеорология» и «Метеорология специального назначения» / Воен.-косм. акад. им. А. Ф. Можайского; В. В. Клёмин, Ю. В. Кулешов, С. С. Суворов, Ю. Н. Волконский; [под общ. ред. С. С. Суворова и В. В. Клёмина]. Санкт-Петербург: Наука, 2013. 420 с.
- 3. Российский гидрометеорологический энциклопедический словарь: [В 3 т.]/Федер. служба по гидрометеорологии и мониторингу окружающей среды, Гл. геофизическая обсерватория им. А. И. Воейкова; Отв. сост. К. Ш. Хайруллин; Под ред. А. И. Бедрицкого. СПб.: Лет. сад, 2008 2009. 854 с.
- 4. Русин И.Н., Арапов П.П. Основы метеорологии и климатологии. Курс лекций. СПб.: изд. РГГМУ, 2008. 199 с. Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-417170603.pdf.
- 5. Семенченко Б.А. Физическая метеорология: учебник. М.: Аспект Пресс, 2002. 415 с.
- 6. Хромов С, П., Петросянц М.А. Метеорология и климатология: учебник 5-е изд. перераб. и и доп. М.: изд-во МГУ, 2001.-528 с. Тема «Физика океана»
- 7. Кошляков М.Н. Тараканов Р.Ю. Ведение в физическую океанографию: учеб. пособие для вузов по напр. «Прикладные мат-ка и физика» /М; Министерство образования и науки РФ, Моск. физ.-техн. ин-т (гос. ун-т). Москва: МФТИ, 2014. 142 с.
- 8. Малинин В.Н. Общая океанология. Часть І. Физические процессы. СПб: изд. РГГМУ. 1998. 342 с.
- 9. Морской лед (Справочное пособие), ред. Фролов И.Е., Гаврилов В.П. СПб., Гидрометеоиздат, 1997. гл.1,2.

Тема «Физика вод суши»

- 10. Пехович А.И. Основы гидроледотермики. Л.: Энергоатомиздат,1983. 199 с.
- 11. Одрова Т.Е. Гидрофизика водоемов суши. Л.: Гидрометеоиздат, 1979. 311 с. –Электронный библиотечный ресурс: http://elib.rshu.ru/files_books/pdf/img-228165655.pdf.
- 12. Донченко Р.В. Ледовый режим рек СССР. Л.: Гидрометеоиздат,1987. 247 с.
- 13. Михайлов В.Н., Добровольский А.Д., Добролюбов С.А. Гидрология. М., Высшая школа, 2005.

Блок 3

1. Бахвалов, Н. С. Численные методы [Электронный ресурс] / Н. С. Бахвалов, Н.П. Жидков, Г. М. Кобельков. - 7-е изд. (эл.). - М.: БИНОМ. Лаборатория знаний, 2012. -

- 636 с. Электронный библиотечный ресурс: http://znanium.com/catalog.php?bookinfo=365807.
- 2. Вентцель Е. С., Овчаров Л. А. Теория вероятностей и ее инженерные приложения. М.: Наука, 1988.-480 с.
- 3. Груза Г.В., Рейтенбах Р.Г. Статистика и анализ гидрометеорологических данных. Л.: Гидрометеоиздат, 1982. 216 с.
- 4. Исаев А.А. Статистика в метеорологии и климатологии. М. Изд-во МГУ, 1988.-288~c.
- 5. Международное руководство по методам расчета основных гидрологических характеристик. Л.: Гидрометеоиздат, 1984. 247 с.
- 6. Митропольский А. К. Техника статистических вычислений. М.: Наука, 1971.-576 с.
- 7. Рождественский А. В. Оценка точности кривых распределения гидрологических характеристик. Л.: Гидрометеоиздат, 1977. 268 с.
- 8. Рождественский А. В., Чеботарев А. И. Статистические методы в гидрологии. Л.: Гидрометеоиздат, 1974. 422 с.
- 9. Сикан А.В., Малышева Н.Г., Винокуров И.О. Статистические методы анализа гидрометеорологической информации. Лабораторный практикум. СПб.: изд. РГГМУ, 2014. 76 с.
- 10. Статистические методы в прикладной кибернетике /Городецкий В.И., ИоффеА.Я., Морозов Л.М. и др.: Учеб. пособие. М.: МО СССР, 1980. 377 с.
- 11. Статистические методы обработки результатов наблюдений. /Юсупов Р.М., Петухов Г.Б., Сидоров В.Н. и др.: Учебник для вузов. М.: МО СССР, 1984. 563 с.
- 12. Информационные системы, технологии и ГИС. Учебное пособие в 2-х частях. / Истомин Е.П., Колбина О.Н., Петров Я.А., Яготинцева Н.В., Нигматулин Т.А. / СПБ: ООО «Андреевский издательский дом», Издательство «ЮПИ», 2020 г. Ч.1 175 с., Ч.2 181 с.
- 13. Введение в геоинформационное управление. Учебное пособие. /Вагизов М.Р., Истомин Е.П., Колбина О.Н., Присяжнюк С.П., Соколов А.Г., Яготинцева Н.В./ СПб: $H\Pi$ «БИУ» 2021 г. -352 с.
- 14. Журкин И. Г. Геоинформационные системы. [Текст]: учебное пособие / И. Г. Журкин, С. В. Шайтура; ред.: И. Г. Журкин, 2009. 272 с.
- 15. Инструментарий геоинформационных систем / Б.С. Бусыгин, И.Н. Гаркуша, Е.С. Середин, А.Ю. Гаевенко./ Киев: ИРГ «ВБ», 2000.

Приложение к Программе вступительного испытания, проводимого РГГМУ самостоятельно, для поступающих на основные образовательные программы магистратуры в 2024 году

Направления подготовки, на которые учитываются результаты вступительного испытания

<u>№</u> п/п	Код	Направление подготовки / направленность (профиль)
1	05.04.05	Прикладная гидрометеорология
		Направленность (профиль) «Прикладная метеорология»
		направленность (профиль) «Моделирование атмосферных процессов»;
		направленность (профиль) «Организационно-правовое обеспечение
		деятельности в облатси гидрометеорологии и мониторинга
		окружающей среды»
		направленность (профиль) «Гидрология суши и рациональное
		использование водных ресурсов»;
		направленность (профиль) «Океанология»;
		направленность (профиль) «Морская деятельность и комплексное
		управление прибрежными зонами»;
		направленность (профиль) «Геоинформационное обеспечение
		гидрометеорологической и гидрографической деятельности в
		Арктике»